#57290. 括号序列

    ID: 57290 传统题 1000ms 256MiB 尝试: 0 已通过: 0 难度: (无) 上传者: 标签>NOIP提高组/CSP-S提高T2特殊形式的动态规划题单区间 dp魔扣OJ

括号序列

暂无测试数据。

小 w 在赛场上遇到了这样一个题:一个长度为 $n$ 且符合规范的括号序列,其有些位置已经确定了,有些位置尚未确定,求这样的括号序列一共有多少个。

身经百战的小 w 当然一眼就秒了这题,不仅如此,他还觉得一场正式比赛出这么简单的模板题也太小儿科了,于是他把这题进行了加强之后顺手扔给了小 c。

具体而言,小 w 定义“超级括号序列”是由字符 ()* 组成的字符串,并且对于某个给定的常数 $k$,给出了“符合规范的超级括号序列”的定义如下:

  1. ()(S) 均是符合规范的超级括号序列,其中 S 表示任意一个仅由不超过 $k$ 个字符 * 组成的非空字符串(以下两条规则中的 S 均为此含义);
  2. 如果字符串 AB 均为符合规范的超级括号序列,那么字符串 ABASB 均为符合规范的超级括号序列,其中 AB 表示把字符串 A 和字符串 B 拼接在一起形成的字符串;
  3. 如果字符串 A 为符合规范的超级括号序列,那么字符串 (A)(SA)(AS) 均为符合规范的超级括号序列。
  4. 所有符合规范的超级括号序列均可通过上述 $3$ 条规则得到。

例如,若 $k = 3$,则字符串 ((**()*(*))*)(***) 是符合规范的超级括号序列,但字符串 *()(*()*)((**))*)(****(*)) 均不是。特别地,空字符串也不被视为符合规范的超级括号序列。

现在给出一个长度为 $n$ 的超级括号序列,其中有一些位置的字符已经确定,另外一些位置的字符尚未确定(用 ? 表示)。小 w 希望能计算出:有多少种将所有尚未确定的字符一一确定的方法,使得得到的字符串是一个符合规范的超级括号序列?

可怜的小 c 并不会做这道题,于是只好请求你来帮忙。

输入格式

第一行,两个正整数 $n, k$。

第二行,一个长度为 $n$ 且仅由 ()*? 构成的字符串 S

输出格式

输出一个非负整数表示答案对 ${10}^9 + 7$ 取模的结果。

数据范围

测试点编号 $n\leq$ 特殊性质
$1\sim 3$ 15
$4\sim 8$ 40
$9\sim 13$ 100
$14\sim 15$ 500 $S$ 串中仅含有字符 ?
$16\sim 20$ 500
7 3
(*??*??
5
10 2
???(*??(?)
19